

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Group Actions on Stanley and Stanley-Reisner Rings18 January 2020

Ashleigh Adams

University of Minnesota, Twin Cities Senior Thesis Advisor: Vic Reiner

Joint Math Meetings, Denver, Colorado AMS Contributed Paper Session on Combinatorics and Graph Theory, III

Overview

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Worl

A New Combinatorial Invariant

2 Future Work

Overview

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

1 A New Combinatorial Invariant

2 Future Work

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Reference

Definition: A simplicial complex Δ on a vertex set $V = V(\Delta)$ is a collection of subsets $F \subseteq V$ (called faces) such that

- \bullet if $v \in V$, then $\{v\} \in \Delta$,
- $\textcircled{\scriptsize 1}$ and if $F \in \Delta$ and $G \subset F$, then $G \in \Delta$
- The dimension of $F \in \Delta$ is |F| 1.
- $f(\Delta) = (f_{-1}, f_0, \dots, f_d)$ where $f_i = \#\{\text{faces of dimension } i\}$ is called the f-vector of Δ .

Definition: If $V = \{x_1, \dots, x_n\}$ is the vertex set of a simplicial complex Δ , then the **Stanley-Reisner ring** is the quotient ring $\mathbb{k}[\Delta] = \mathbb{k}[V]/I_{\Delta}$ where

$$I_{\Delta} = \langle x_{i_1} \cdots x_{i_r} : x_{i_i} \in V \text{ but } \{x_{i_1}, \dots, x_{i_r}\} \not\in \Delta \} \rangle.$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Defense

Definition: A simplicial complex Δ on a vertex set $V = V(\Delta)$ is a collection of subsets $F \subseteq V$ (called faces) such that

- \bullet if $v \in V$, then $\{v\} \in \Delta$,
- $\textcircled{\scriptsize 1}$ and if $F \in \Delta$ and $G \subset F$, then $G \in \Delta$
- The **dimension** of $F \in \Delta$ is |F| 1.
- $f(\Delta) = (f_{-1}, f_0, \dots, f_d)$ where $f_i = \#\{\text{faces of dimension } i\}$ is called the f-vector of Δ .

Definition: If $V = \{x_1, \dots, x_n\}$ is the vertex set of a simplicial complex Δ , then the **Stanley-Reisner ring** is the quotient ring $\mathbb{k}[\Delta] = \mathbb{k}[V]/I_{\Delta}$ where

$$I_{\Delta} = \langle x_{i_1} \cdots x_{i_r} : x_{i_i} \in V \text{ but } \{x_{i_1}, \dots, x_{i_r}\} \not\in \Delta \} \rangle.$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Reference

Definition: A simplicial complex Δ on a vertex set $V = V(\Delta)$ is a collection of subsets $F \subseteq V$ (called faces) such that

- \bullet if $v \in V$, then $\{v\} \in \Delta$,
- $\textcircled{\scriptsize 1}$ and if $F \in \Delta$ and $G \subset F$, then $G \in \Delta$
- The dimension of $F \in \Delta$ is |F| 1.
- $f(\Delta) = (f_{-1}, f_0, \dots, f_d)$ where $f_i = \#\{\text{faces of dimension } i\}$ is called the f-vector of Δ .

Definition: If $V = \{x_1, \dots, x_n\}$ is the vertex set of a simplicial complex Δ , then the **Stanley-Reisner ring** is the quotient ring $\mathbb{k}[\Delta] = \mathbb{k}[V]/I_{\Delta}$ where

$$I_{\Delta} = \langle x_{i_1} \cdots x_{i_r} : x_{i_i} \in V \text{ but } \{x_{i_1}, \dots, x_{i_r}\} \not\in \Delta \} \rangle.$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Reference

Definition: A simplicial complex Δ on a vertex set $V = V(\Delta)$ is a collection of subsets $F \subseteq V$ (called faces) such that

- \bullet if $v \in V$, then $\{v\} \in \Delta$,
- $\textcircled{\scriptsize 1}$ and if $F \in \Delta$ and $G \subset F$, then $G \in \Delta$
- **●** The **dimension** of $F \in \Delta$ is |F| 1.
- $f(\Delta) = (f_{-1}, f_0, \dots, f_d)$ where $f_i = \#\{\text{faces of dimension } i\}$ is called the f-vector of Δ .

Definition: If $V = \{x_1, ..., x_n\}$ is the vertex set of a simplicial complex Δ , then the **Stanley-Reisner ring** is the quotient ring $\mathbb{k}[\Delta] = \mathbb{k}[V]/I_{\Delta}$ where

$$I_{\Delta} = \langle x_{i_1} \cdots x_{i_r} : x_{i_i} \in V \text{ but } \{x_{i_1}, \dots, x_{i_r}\} \not\in \Delta \} \rangle.$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

D (

Definition: A simplicial complex Δ on a vertex set $V = V(\Delta)$ is a collection of subsets $F \subseteq V$ (called faces) such that

- \bullet if $v \in V$, then $\{v\} \in \Delta$,
- $\textcircled{\scriptsize 1}$ and if $F \in \Delta$ and $G \subset F$, then $G \in \Delta$
- **●** The **dimension** of $F \in \Delta$ is |F| 1.
- $f(\Delta) = (f_{-1}, f_0, \dots, f_d)$ where $f_i = \#\{\text{faces of dimension } i\}$ is called the f-vector of Δ .

Definition: If $V = \{x_1, ..., x_n\}$ is the vertex set of a simplicial complex Δ , then the **Stanley-Reisner ring** is the quotient ring $\mathbb{k}[\Delta] = \mathbb{k}[V]/I_{\Delta}$ where

$$I_{\Delta} = \langle x_{i_1} \cdots x_{i_r} : x_{i_i} \in V \text{ but } \{x_{i_1}, \dots, x_{i_r}\} \not\in \Delta \} \rangle.$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Deference

 \bigstar We will consider a list of elements $\theta = (\theta_1, \dots, \theta_d)$ inside $\mathbb{k}[\Delta]$ where for each 0 < i < d

$$\theta_i = \sum_{\substack{F \subset \Delta \\ \dim(F) + 1 = i}} x_F.$$

- ① θ is algebraically independent, i.e., they generate a polynomial subalgebra $\mathbb{k}[\theta]$, of $\mathbb{k}[\Delta]$.
- \star Properties 1 and 2 make $\Bbbk[\theta]$ a parameter ring for $\Bbbk[\Delta]$.

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

 \bigstar We will consider a list of elements $\theta = (\theta_1, \dots, \theta_d)$ inside $\mathbb{k}[\Delta]$ where for each 0 < i < d

$$\theta_i = \sum_{\substack{F \subset \Delta \\ \dim(F)+1=i}} x_F.$$

- **1** θ is algebraically independent, i.e., they generate a polynomial subalgebra, $\mathbb{k}[\theta]$, of $\mathbb{k}[\Delta]$.
- \star Properties 1 and 2 make $\mathbb{k}[\theta]$ a parameter ring for $\mathbb{k}[\Delta]$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

 \bigstar We will consider a list of elements $\theta = (\theta_1, \dots, \theta_d)$ inside $\mathbb{k}[\Delta]$ where for each 0 < i < d

$$\theta_i = \sum_{\substack{F \subset \Delta \\ \dim(F)+1=i}} x_F.$$

- **1** θ is algebraically independent, i.e., they generate a polynomial subalgebra, $\mathbb{k}[\theta]$, of $\mathbb{k}[\Delta]$.
- $2 \mathbb{k}[\Delta]$ can be finitely generated as a $\mathbb{k}[\theta]$ -module.
- \star Properties 1 and 2 make $\Bbbk[\theta]$ a **parameter ring** for $\Bbbk[\Delta]$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

D (

 \bigstar We will consider a list of elements $\theta = (\theta_1, \dots, \theta_d)$ inside $\mathbb{k}[\Delta]$ where for each 0 < i < d

$$\theta_i = \sum_{\substack{F \subset \Delta \\ \dim(F)+1=i}} x_F.$$

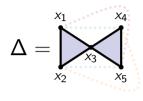
- **1** θ is algebraically independent, i.e., they generate a polynomial subalgebra, $\mathbb{k}[\theta]$, of $\mathbb{k}[\Delta]$.
- 2 $\mathbb{k}[\Delta]$ can be finitely generated as a $\mathbb{k}[\theta]$ -module.
- \star Properties 1 and 2 make $k[\theta]$ a parameter ring for $k[\Delta]$.

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5] / \langle x_1 x_4, x_1 x_5, x_2 x_4, x_2 x_5 \rangle.$$

Then our parameters are

$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

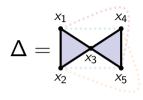
Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

References



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5]/\langle x_1x_4, x_1x_5, x_2x_4, x_2x_5\rangle.$$

Then our parameters are

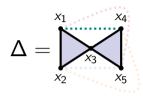
$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5]/\langle x_1x_4, x_1x_5, x_2x_4, x_2x_5\rangle.$$

Then our parameters are

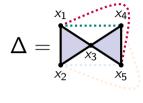
$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5]/\langle x_1x_4, x_1x_5, x_2x_4, x_2x_5\rangle.$$

Then our parameters are

$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

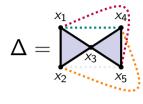
Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Peterences



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5] / \langle x_1 x_4, x_1 x_5, x_2 x_4, x_2 x_5 \rangle.$$

Then our parameters are

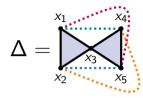
$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5] / \langle x_1 x_4, x_1 x_5, x_2 x_4, x_2 x_5 \rangle.$$

Then our parameters are

$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

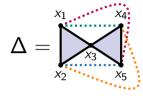
Example of a Parameter Ring for Δ

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work



We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5] / \langle x_1 x_4, x_1 x_5, x_2 x_4, x_2 x_5 \rangle.$$

Then our parameters are:

$$\boldsymbol{\theta} = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

Example of a Parameter Ring for Δ

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

We first compute the Stanley-Reisner ring:

$$\mathbb{k}[\Delta] = \mathbb{k}[x_1, x_2, x_3, x_4, x_5] / \langle x_1 x_4, x_1 x_5, x_2 x_4, x_2 x_5 \rangle.$$

Then our parameters are:

$$\theta = \begin{cases} \theta_1 = x_1 + x_2 + x_3 + x_4 + x_5 \\ \theta_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_3 x_4 + x_3 x_5 + x_4 x_5 \\ \theta_3 = x_1 x_2 x_3 + x_3 x_4 x_5 \end{cases}$$

Free Resolution of $\Bbbk[\Delta]$ as a $\Bbbk[\theta]$ -module

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

References

 \star If we resolve $\mathbb{k}[\Delta]$ (from the previous slide) as a $\mathbb{k}[\theta]$ -module, then we obtain the following minimal free resolution:

$$\mathcal{F}_{\bullet}: \quad 0 \longleftarrow k[\Delta] \longleftarrow k[\theta]^{1} \longleftarrow k[\theta](-5)^{1} \longleftarrow 0$$

$$\oplus k[\theta](-1)^{4}$$

$$\oplus k[\theta](-2)^{5}$$

$$\oplus k[\theta](-3)^{3}$$

Graded Betti Numbers

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Definition

Let S be a polynomial ring and let \mathcal{F}_{\bullet} be a minimal free resolution of a finitely generated \mathbb{N} -graded module M, and $F_i = \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{i,j}}$, then the i-th **graded Betti number** of M in degree j is the invariant $\beta_{i,j}(M) = \beta_{i,j}$.

$$\mathcal{F}_{\bullet}: \quad 0 \longleftarrow M \stackrel{\partial_{0}}{\longleftarrow} F_{0} \stackrel{\partial_{1}}{\longleftarrow} \cdots \stackrel{\partial_{d}}{\longleftarrow} F_{d} \longleftarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0,j}} \qquad \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{d,j}}$$

Note

- The resolution \mathcal{F}_{\bullet} is a **complex** meaning that $\partial_i \circ \partial_{i+1} = 0$ for all $0 \le i \le d$.
- The resolution \mathcal{F}_{\bullet} is **exact** everywhere but in homological degree 0, meaning that for all $1 \le i \le n$, $\ker(\partial_i) = \operatorname{im}(\partial_{i+1})$.

Graded Betti Numbers

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Definition

Let S be a polynomial ring and let \mathcal{F}_{\bullet} be a minimal free resolution of a finitely generated \mathbb{N} -graded module M, and $F_i = \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{i,j}}$, then the i-th **graded Betti number** of M in degree j is the invariant $\beta_{i,j}(M) = \beta_{i,j}$.

$$\mathcal{F}_{\bullet}: \quad 0 \longleftarrow M \stackrel{\partial_{0}}{\longleftarrow} F_{0} \stackrel{\partial_{1}}{\longleftarrow} \cdots \stackrel{\partial_{d}}{\longleftarrow} F_{d} \longleftarrow 0$$

$$\underset{j \in \mathbb{N}}{\parallel} S(-j)^{\beta_{0,j}} \qquad \underset{j \in \mathbb{N}}{\bigoplus} S(-j)^{\beta_{d,j}}$$

Note:

- The resolution \mathcal{F}_{\bullet} is a **complex** meaning that $\partial_i \circ \partial_{i+1} = 0$ for all $0 \leq i \leq d$.
- The resolution \mathcal{F}_{\bullet} is **exact** everywhere but in homological degree 0, meaning that for all $1 \le i \le n$, $\ker(\partial_i) = \operatorname{im}(\partial_{i+1})$.

Special Case: Cohen-Macaulay

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Reference

Definition

A simplicial complex Δ is **Cohen-Macaulay** if $\mathbb{k}[\Delta]$ is a free $\mathbb{k}[\theta]$ -module, i.e., the resolution stops at F_0 .

$$\mathcal{F}_{\bullet}: \quad 0 \longleftarrow \mathbb{k}[\Delta] \stackrel{\partial_0}{\longleftarrow} F_0 \longleftarrow 0$$

$$\parallel$$

$$\bigoplus_{j \in \mathbb{N}} \mathbb{k}[\theta](-j)^{\beta_{0,j}}$$

Theorem (A - Reiner; 2019)

When Δ is Cohen-Macaulay, then $\beta_{0,j}$ of the free resolution of $\mathbb{k}[\Delta]$ as a $\mathbb{k}[\theta]$ -module are completely determined by $f(\Delta) = (f_{-1}, f_0, \dots, f_{d-1})$.

Punchline: For Δ Cohen-Macaulay, the $\beta_{i,i}$ give no new information.

Group Actions on Stanley and

Rings
Title Page

Stanley-Reisner

A New Combinatorial

Future Work

Defense

Special Case: Cohen-Macaulay

Definition

A simplicial complex Δ is **Cohen-Macaulay** if $\mathbb{k}[\Delta]$ is a free $\mathbb{k}[\theta]$ -module, i.e., the resolution stops at F_0 .

$$\mathcal{F}_{\bullet}: \quad 0 \longleftarrow \mathbb{k}[\Delta] \stackrel{\partial_{0}}{\longleftarrow} F_{0} \longleftarrow 0$$

$$\parallel$$

$$\bigoplus_{j \in \mathbb{N}} \mathbb{k}[\theta](-j)^{\beta_{0,j}}$$

Theorem (A - Reiner; 2019)

When Δ is Cohen-Macaulay, then $\beta_{0,j}$ of the free resolution of $\mathbb{k}[\Delta]$ as a $\mathbb{k}[\theta]$ -module are completely determined by $f(\Delta) = (f_{-1}, f_0, \dots, f_{d-1})$.

Punchline: For Δ Cohen-Macaulay, the $\beta_{i,i}$ give no new information.

Special Case: Cohen-Macaulay

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Definition

A simplicial complex Δ is **Cohen-Macaulay** if $\mathbb{k}[\Delta]$ is a free $\mathbb{k}[\theta]$ -module, i.e., the resolution stops at F_0 .

$$\mathcal{F}_{\bullet}: \quad 0 \longleftarrow \mathbb{k}[\Delta] \stackrel{\partial_0}{\longleftarrow} F_0 \longleftarrow 0$$

$$\parallel$$

$$\bigoplus_{j \in \mathbb{N}} \mathbb{k}[\theta](-j)^{\beta_{0,j}}$$

Theorem (A - Reiner; 2019)

When Δ is Cohen-Macaulay, then $\beta_{0,j}$ of the free resolution of $\mathbb{k}[\Delta]$ as a $\mathbb{k}[\theta]$ -module are completely determined by $f(\Delta) = (f_{-1}, f_0, \dots, f_{d-1})$.

Punchline: For Δ Cohen-Macaulay, the $\beta_{i,j}$ give no new information.

Special Case: Graphs

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Defense

Theorem (A - Reiner; 2019) Let Δ be a 1 dimensional simplicial complex with $f(\Delta) = (f_{-1}, f_0, f_1)$, then $\mathbb{k}[\Delta]$ has the following resolution as a $\mathbb{k}[\theta]$ -module:

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^{1} \longleftarrow \mathbb{k}[\theta](-3)^{\tilde{\beta}_{0}(\Delta)} \longleftarrow 0$$

$$\oplus \mathbb{k}[\theta](-1)^{f_{0}-1} \oplus \mathbb{k}[\theta](-2)^{f_{1}-1} \oplus \mathbb{k}[\theta](-3)^{\tilde{\beta}_{1}(\Delta)}$$

where $\tilde{\beta}_i(\Delta)$ is the *i*-th reduced Betti number of Δ . More specifically, $\tilde{\beta}_1(\Delta) = \#$ independent cycles and $\tilde{\beta}_0(\Delta) = \#$ connected components -1.

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

$$\Delta = \sum_{x_3} \sum_{x_5}^{x_4} f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \\ \tilde{\beta}_1(\Delta) = 1, & \tilde{\beta}_0(\Delta) = 1 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{R}[\Delta] \longleftarrow \mathbb{R}[\theta]^1 \longleftarrow \mathbb{R}[\theta](-3)^1 \longleftarrow 0$$

$$0 \longleftarrow \mathbb{R}[\Delta] \longleftarrow \mathbb{R}[\theta](-1)^4$$

$$0 \longleftarrow \mathbb{R}[\theta](-2)^3$$

$$0 \longleftarrow \mathbb{R}[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

$$\Delta = \sum_{x_3} \prod_{x_5} f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \\ \tilde{\beta}_1(\Delta) = 1, & \tilde{\beta}_0(\Delta) = 1 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$0 \longleftarrow \mathbb{k}[\theta](-1)^4$$

$$0 \longleftarrow \mathbb{k}[\theta](-2)^3$$

$$0 \longleftarrow \mathbb{k}[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

$$\Delta = \sum_{x_3} \prod_{x_5} f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$\psi$$

$$k[\theta](-1)^4$$

$$\psi$$

$$k[\theta](-2)^3$$

$$\psi$$

$$k[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

$$\Delta = \sum_{x_3} \prod_{x_5} K_4 \qquad f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$\oplus k[\theta](-1)^4 \qquad \oplus k[\theta](-2)^3 \qquad \oplus k[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Poforonco

$$\Delta = \sum_{x_3} \prod_{x_5}^{x_4} f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \\ \tilde{\beta}_1(\Delta) = 1, & \tilde{\beta}_0(\Delta) = 1 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$\oplus$$

$$k[\theta](-1)^4$$

$$\oplus$$

$$k[\theta](-2)^3$$

$$\oplus$$

$$k[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

$$\Delta = \sum_{x_2}^{x_1} \sum_{x_3}^{x_4} f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$\oplus$$

$$k[\theta](-1)^4$$

$$\oplus$$

$$k[\theta](-2)^3$$

$$\oplus$$

$$k[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

D (

$$\Delta = \sum_{x_3} \int_{x_5}^{x_4} f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$\oplus$$

$$k[\theta](-1)^4$$

$$\oplus$$

$$k[\theta](-2)^3$$

$$\oplus$$

$$k[\theta](-3)^1$$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Deference

$$\Delta = \sum_{x_3}^{x_1} \sum_{x_5}^{x_4} \qquad f(\Delta) = \begin{pmatrix} f_{-1}, & f_0, & f_1 \\ 1, & 5, & 4 \end{pmatrix}$$

$$0 \longleftarrow \mathbb{k}[\Delta] \longleftarrow \mathbb{k}[\theta]^1 \longleftarrow \mathbb{k}[\theta](-3)^1 \longleftarrow 0$$

$$\oplus$$

$$k[\theta](-1)^4$$

$$\oplus$$

$$k[\theta](-2)^3$$

$$\oplus$$

$$k[\theta](-3)^1$$

Special Case: Graph Corollary

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatorial Invariant

Future Work

Corollary (A - Reiner; 2019)

For any simplicial cell complex Δ of dimension 1, with vertex set $V(\Delta)$ and edge set $E(\Delta)$, $k[\Delta]$ is isomorphic as a graded (virtual) Aut(Δ)-representation to

$$\Bbbk[\boldsymbol{\theta}] \otimes \Big(\Bbbk(\mathbf{0})$$

$$\oplus \ \Bbbk[V(\Delta)]/\Bbbk$$
-span $\{\theta_1\}(-1)$

$$\oplus \mathbb{k}[E(\Delta)]/\mathbb{k}$$
-span $\{\theta_2\}(-2)$

$$\oplus \left(\tilde{H}^1(\Delta) - \tilde{H}^0(\Delta) \right) (-3)$$

Overview

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

Reference

A New Combinatorial Invariant

2 Future Work

Future Work & Cohen-Macaulay Simplicial Posets

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

References

Conjecture (A - Reiner; 2019) Let Δ be a simplicial cell complex of dimension d-1 with barycentric subdivision $Sd(\Delta)$, and let $Aut(\Delta)$ be the group of automorphisms of Δ . Then

$$\operatorname{Tor}_i{}^{\Bbbk[\theta]}(\Bbbk[\Delta], \Bbbk)_j \cong \bigoplus_{S \subseteq [d]: \sum_{s \in S} s = j} \tilde{H}^{|S| - i - 1}(Sd(\Delta)|_S)$$

as (virtual) Aut(Δ)-representations.

Theorem (A - Reiner; 2019)

Let P be a Cohen-Macaulay simplicial poset and let G be a group of poset automorphisms of P that extends to ring automorphims of $\mathbb{k}[P]$. Then, for all $i \geq 0$, the i-th graded piece of $\mathbb{k}[P]/(\theta)$ is isomorphic to the direct sum of irreducible characters of $\tilde{H}_{|S|-i+1}(P_S)$, where P_S is a rank-selected poset of P, for all $S \subseteq [n]$ with $\sum_{s \in S} s = i$.

Future Work

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

Question

Given a simplicial cell complex Δ or a simplicial poset P, is the depth of $\mathbb{k}[\Delta]$ or $\mathbb{k}[P]$ as a $\mathbb{k}[\theta]$ -module the same as the max m > 0 such that $(\theta_1, \ldots, \theta_m)$ is a regular sequence acting on $\mathbb{k}[\Delta]$ or acting on $\mathbb{k}[P]$?

★ If yes, this would be analogous to a conjecture by Landweber and Stong (1987).

Future Work

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

Question

Given a simplicial cell complex Δ or a simplicial poset P, is the depth of $\mathbb{k}[\Delta]$ or $\mathbb{k}[P]$ as a $\mathbb{k}[\theta]$ -module the same as the max m > 0 such that $(\theta_1, \ldots, \theta_m)$ is a regular sequence acting on $\mathbb{k}[\Delta]$ or acting on $\mathbb{k}[P]$?

★ If yes, this would be analogous to a conjecture by Landweber and Stong (1987).

Overview

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Worl

References

1 A New Combinatorial Invariant

2 Future Work

References

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

References

 $T + Ht + At^2 + Nt^3 + Kt^4 + St^5$

- 1 You can find these slides on: ashleigh-adams.com
- 2 Hodge Algebras, Corrando De Concini, David Eisenbud, and Claudio Procesi
- 3 Simplicial Posets- f-vectors and Free Resolutions, Arthur Duval
- 4 Some Aspects of Groups Acting on Finite Posets, Richard Stanley
- **5** *f-vectors and h-vectors of simplicial posets*, Richard Stanley
- The depth of rings of invariants over finite fields, Peter Landweber and Robert Stong.

A Canonical H.S.O.P. for $\Bbbk[\Delta]$

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

References

Theorem (De Concini, Eisenbud, Procesi 1982)

Let R be a noetherian ring and let A be a commutative \mathbb{R} -algebra generated by $V \subset A$. If $V = \bigcup_{i=0}^n V_i$, where each V_i is a clutter, then VA is nilpotent modulo the ideal generated by the elements $\theta_i = \sum_{x \in V_i} x$ for all $i \in [n]$ and $A/(\theta)A$ is generated as an R-module by square-free standard monomials.

Let P be a simplicial poset of rank n, and let $\theta = (\theta_1, \dots, \theta_n)$ be a sequence such that for each $0 \le i \le n$

$$\theta_i = \sum_{\substack{F \subset P \\ rank(F)=i}} x_F.$$

Since each term in θ_i is determined by incomparable faces in P, then P forms an H.S.O.P. for $\mathbb{k}[P]$.

Representations of G on P_S

Group Actions on Stanley and Stanley-Reisner Rings

Title Page

A New Combinatoria Invariant

Future Work

References

Let G be a group acting on the simplicial poset P. Since every element in G that acts on $P_S \in P$ is order preserving, then G also acts on the on the reduced homology group $\tilde{H}_i(P_S)$ for $-1 \le i \le |S| - 1$. Let

$$\gamma_{S,i}: G \to Aut(\tilde{H}_i(P_S)),$$

then we define a virtual representation of G to be

$$\beta_{\mathcal{S}} := \sum_{i>1} (-1)^{|\mathcal{S}|-1-i} \gamma_{\mathcal{S},i}.$$

Lemma (Stanley 1981)

Let $S = \{s_1 < s_2 < \dots < s_m\} \subseteq [n]$ and let P_S denote a rank-selected subposet of a poset P. If P is Cohen-Macaulay, then β_S is isomorphic to $\chi_{\tilde{H}_{|S|-1}(P_S)}$.